首页> 外文OA文献 >Waste gasification in an up-draft fixed-bed gasifier: Experimental study and model validation
【2h】

Waste gasification in an up-draft fixed-bed gasifier: Experimental study and model validation

机译:上流式固定床气化炉中的废气气化:实验研究和模型验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gasification has been identified as a key technology to enhance the environmental tolerability of low quality fuels such as waste and biomass. In this work the performances of a laboratory scale gasification process fed with waste are reported. Among the several technical choices, we selected the up-draft fixed-bed gasifier as an interesting solution for heat generation in small-scale applications, due to the characteristics of simple geometry and low cost. The experimental setup is composed by an up-draft gasifier followed by a reactor used as filter to remove the particulate and as second thermal and catalytic stage to convert the produced tar in lighter species. A literature model has been adapted to the case under study to analyse the influence of operative parameters such as oxidant flow rate (equivalent and air/steam ratio values) and gasification temperature of the process. The original literature model considers the species gas evolution along the axial coordinate only, and does not include time dependency. To make the model time dependent, the consumption time of the gasification fuel bed estimated from experimental tests was introduced. Since the oxidation zone is below the gasification one, the initial species concentrations were set as the species concentrations produced at the end of the oxidation zone, calculated with an atom mass balance considering a complete char combustion. Since the model concerns only the gasification, the up-draft process was split into two consecutive steps to allow direct comparison between experimental and simulated data: first the drying and pyrolysis processes and then the fixed bed gasification. The model was successfully validated with experimental data and then it was used to predict the operative parameters that determine the optimal syngas composition. The best syngas composition (35% CO and 10% H2) was obtained with an equivalent ratio of 0.6 and a bed temperature of 1100 K. © 201 WIT Press.
机译:气化已被确认为提高低质燃料(例如废物和生物质)的环境耐受性的关键技术。在这项工作中,报告了用废料进料的实验室规模气化过程的性能。在几种技术选择中,由于几何形状简单和成本低的特点,我们选择了立式固定床气化炉作为小规模应用中产生热量的有趣解决方案。实验装置由上流式气化炉和随后的反应器组成,该反应器用作过滤器以除去颗粒,并作为第二热催化阶段将生成的焦油转化为较轻的物质。文献模型已针对所研究的案例进行了调整,以分析操作参数(例如氧化剂流速(当量值和空气/蒸汽比值)和过程的气化温度)的影响。原始文献模型仅考虑物种气体沿轴向坐标的演变,并且不包括时间依赖性。为了使模型时间相关,引入了根据实验测试估算的气化燃料床的消耗时间。由于氧化区位于气化炉的下方,因此将初始物种浓度设置为在氧化区末尾产生的物种浓度,并根据考虑到完全炭燃烧的原子质量平衡计算得出。由于模型仅涉及气化,因此将上升气流过程分为两个连续的步骤,以便可以直接比较实验数据和模拟数据:首先是干燥和热解过程,然后是固定床气化。该模型已通过实验数据成功验证,然后用于预测确定最佳合成气组成的操作参数。最佳合成气组成(35%CO和10%H2)的当量比为0.6,床温为1100K。©201 WIT Press。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号